Ebben a fejezetben a statisztikai mutatók kiszámítását mutatjuk be. Az R rendkívül sok függvényt kínál, melyek egyfajta csoportosítása a következő lehet:
1. feladat. Mutatók
Határozzuk meg aMASS
csomag survey adattáblájában a numerikus változók mutatóit a fenti csoportosítás figyelembe vételével!
data(survey, package = "MASS") # a survey beolvasása
str(survey) # numerikus oszlopok keresése
'data.frame': 237 obs. of 12 variables:
$ Sex : Factor w/ 2 levels "Female","Male": 1 2 2 2 2 1 2 1 2 2 ...
$ Wr.Hnd: num 18.5 19.5 18 18.8 20 18 17.7 17 20 18.5 ...
$ NW.Hnd: num 18 20.5 13.3 18.9 20 17.7 17.7 17.3 19.5 18.5 ...
$ W.Hnd : Factor w/ 2 levels "Left","Right": 2 1 2 2 2 2 2 2 2 2 ...
$ Fold : Factor w/ 3 levels "L on R","Neither",..: 3 3 1 3 2 1 1 3 3 3 ...
$ Pulse : int 92 104 87 NA 35 64 83 74 72 90 ...
$ Clap : Factor w/ 3 levels "Left","Neither",..: 1 1 2 2 3 3 3 3 3 3 ...
$ Exer : Factor w/ 3 levels "Freq","None",..: 3 2 2 2 3 3 1 1 3 3 ...
$ Smoke : Factor w/ 4 levels "Heavy","Never",..: 2 4 3 2 2 2 2 2 2 2 ...
$ Height: num 173 178 NA 160 165 ...
$ M.I : Factor w/ 2 levels "Imperial","Metric": 2 1 NA 2 2 1 1 2 2 2 ...
$ Age : num 18.2 17.6 16.9 20.3 23.7 ...
mean(survey$Height, na.rm=T) # átlag
[1] 172.3809
median(survey$Height, na.rm=T) # medián
[1] 171
sd(survey$Height, na.rm=T) # szórás
[1] 9.847528
var(survey$Height, na.rm=T) # szórásnégyzet (variancia)
[1] 96.9738
diff(range(survey$Height, na.rm=T)) # a minta terjedelme
[1] 50
IQR(survey$Height, na.rm=T) # interkvartilis eltérés
[1] 15
min(survey$Height, na.rm=T) # minimum
[1] 150
max(survey$Height, na.rm=T) # maximum
[1] 200
quantile(survey$Height, na.rm=T) # minimum, kvartilisek és a maximum
0% 25% 50% 75% 100%
150 165 171 180 200
quantile(survey$Height, prob=c(0.33, 0.66), na.rm=T) # a 33 és 66%-os kvantilisek
33% 66%
167.64 176.14
mad(survey$Height, na.rm=T) # mediántól való abszolút eltérés mediánja
[1] 10.08168
library(e1071)
skewness(survey$Height, na.rm=T) # ferdeségi együttható
[1] 0.2158388
kurtosis(survey$Height, na.rm=T) # csúcsossági együttható
[1] -0.4374444
summary()
függvényA summary()
outputjában megjelenő mutatók:
Név az outputban | Jelentés |
---|---|
Min. |
minimum |
1st Qu. |
alsó kvartilis |
Median |
medián |
Mean |
átlag |
3rd Qu. |
felső kvartilis |
Max. |
maximum |
NA's |
hiányzó értékek száma |
summary(survey$Height)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
150.0 165.0 171.0 172.4 180.0 200.0 28
psych
csomagokkal describe()
függvényévelA psych::describe()
outputjában megjelenő mutatók:
Név az outputban | Jelentés |
---|---|
vars |
a változó sorszáma |
n |
érvényes (nem hiányzó) mintaelemszám |
mean |
átlag |
sd |
szórás |
median |
medián |
trimmed |
trimmelt átlag |
mad |
mediántól való abszolút eltérés mediánja |
min |
minimum |
max |
maximum |
range |
terjedelem |
skew |
ferdeség |
kurtosis |
csúcsosság |
se |
standard hiba |
library(psych)
psych::describe(survey$Height)
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 209 172.38 9.85 171 172.19 10.08 150 200 50 0.22 -0.44 0.68
pastecs
csomag stat.desc()
függvényévelA pastecs::stat.desc()
outputjában megjelenő mutatók:
Név az outputban | Jelentés |
---|---|
nbr.val |
érvényes (nem hiányzó) mintaelemszám |
nbr.null |
a nulla értékek száma |
nbr.na |
a hiányzó értékek száma |
min |
minimum |
max |
maximum |
range |
terjedelem |
sum |
az értékek összege |
median |
medián |
mean |
átlag |
SE.mean |
standard hiba |
CI.mean.0.95 |
a 95%-os konfidencia intervallum félterjedelme |
var |
variancia |
std.dev |
szórás |
coef.var |
relatív gyakoriság |
skewness |
ferdeségi együttható |
skew.2SE |
szignifikancia kritérium a ferdeségre |
kurtosis |
csúcsossági együttható |
kurt.2SE |
szignifikancia kritérium a csúcsosságra |
normtest.W |
Shapiro-Wilk-próba próbastatisztika értéke |
normtest.p |
Shapiro-Wilk-próba p értéke |
library(pastecs)
round(stat.desc(survey$Height, norm = T), digits=3)
nbr.val nbr.null nbr.na min max range sum
209.000 0.000 28.000 150.000 200.000 50.000 36027.600
median mean SE.mean CI.mean.0.95 var std.dev coef.var
171.000 172.381 0.681 1.343 96.974 9.848 0.057
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
0.216 0.641 -0.437 -0.653 0.988 0.088
DescTools
csomag Desc
függvényévelA DescTools::Desc()
outputjában megjelenő mutatók:
Név az outputban | Jelentés |
---|---|
length |
a vektor elemszáma |
n |
érvényes (nem hiányzó) mintaelemszám |
NAs |
hiányzó értékek száma |
unique |
egyedi értékek száma |
0s |
a nulla értékek száma |
mean |
átlag |
meanSE |
standard hiba |
.05 , .10 , .25 , median , .75 , .90 , .95 |
kvantilisek táblázata |
sd |
szórás |
vcoef |
relatív szórás |
mad |
mediántól való abszolút eltérés mediánja |
IQR |
interkvartilis eltérés |
skew |
ferdeségi együttható |
kurt |
csúcsossági együttható |
lowest |
a legkisebb értékek, zárójelben a gyakoriság |
highest |
a legnagyobb értékek, zárójelben a gyakoriság |
Shapiro-Wilks ... |
Shapiro-Wilk-próba p értéke |
library(DescTools)
Desc(survey$Height)
--------------------------------------------------------------------------------------------------
survey$Height (numeric)
length n NAs unique 0s mean meanSE
237 209 28 67 0 172.381 0.681
.05 .10 .25 median .75 .90 .95
157 160 165 171 180 185.420 189.600
rng sd vcoef mad IQR skew kurt
50 9.848 0.057 10.082 15 0.216 -0.437
lowest : 150, 152, 152.4, 153.5, 154.94 (2)
highest: 191.8, 193.04, 195, 196, 200
Shapiro-Wilks normality test p.value : 0.088436
Rcmdr
csomag numSummary()
függvényévelAz Rcmdr::numSummary()
outputjában megjelenő mutatók:
Név az outputban | Jelentés |
---|---|
mean |
átlag |
sd |
szórás |
se(mean) |
standard hiba |
IQR |
interkvratilis eltérés |
cv |
relatív szórás |
skewness |
ferdeségi együttható |
kurtosis |
csúcsossági együttható |
0% , 25% , 50% , 75% , 100% |
kvantilisek |
n |
érvényes (nem hiányzó) értékek száma |
NA |
hiányzó értékek száma |
library(Rcmdr)
numSummary(survey$Height)
mean sd IQR 0% 25% 50% 75% 100% n NA
172.3809 9.847528 15 150 165 171 180 200 209 28
# még több mutató a numSummary() függvénnyel
numSummary(survey$Height, statistics=c("mean", "sd", "se(mean)", "IQR",
"quantiles", "cv", "skewness", "kurtosis"))
mean sd se(mean) IQR cv skewness kurtosis 0% 25% 50% 75% 100% n NA
172.3809 9.847528 0.6811677 15 0.05712657 0.2189719 -0.3935254 150 165 171 180 200 209 28
A szokásos mutatószámoló függvények (mean()
, sd()
stb.) használata a tapply()
, aggregate()
és by()
függvényekkel. Most a mean()
függvényent használjuk fel.
tapply(survey$Height, survey$Sex, mean, na.rm=T)
Female Male
165.6867 178.8260
aggregate(survey[, "Height", drop=F], survey[, "Sex", drop=F], mean, na.rm=T)
Sex Height
1 Female 165.6867
2 Male 178.8260
by(survey$Height, survey$Sex, mean, na.rm=T)
survey$Sex: Female
[1] 165.6867
---------------------------------------------------------------------------
survey$Sex: Male
[1] 178.826
tapply(survey$Height, survey[c("Sex", "Exer")], sd, na.rm=T)
Exer
Sex Freq None Some
Female 6.421165 4.795058 5.890017
Male 7.944103 9.616406 8.201259
aggregate(survey[, "Height", drop=F], survey[, c("Sex", "Exer")], sd, na.rm=T)
Sex Exer Height
1 Female Freq 6.421165
2 Male Freq 7.944103
3 Female None 4.795058
4 Male None 9.616406
5 Female Some 5.890017
6 Male Some 8.201259
aggregate(survey[, "Height", drop=F], survey[, c("Sex", "Exer", "Smoke")], sd, na.rm=T)
Sex Exer Smoke Height
1 Female Freq Heavy 2.538372
2 Male Freq Heavy 4.041452
3 Male None Heavy NA
4 Female Some Heavy 5.077027
5 Male Some Heavy NA
6 Female Freq Never 7.005686
7 Male Freq Never 8.532033
8 Female None Never 4.795058
9 Male None Never 11.314006
10 Female Some Never 5.871820
11 Male Some Never 8.006079
12 Female Freq Occas 4.557354
13 Male Freq Occas 7.558523
14 Female None Occas NA
15 Male None Occas NA
16 Female Some Occas 1.527525
17 Male Some Occas NA
18 Female Freq Regul NA
19 Male Freq Regul 6.115471
20 Male None Regul NA
21 Female Some Regul 5.388154
22 Male Some Regul 5.393564
library(psych)
psych::describeBy(x = survey$Height, group = survey$Sex)
group: Female
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 102 165.69 6.15 166.75 165.9 5.32 150 180.34 30.34 -0.33 -0.32 0.61
---------------------------------------------------------------------------
group: Male
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 106 178.83 8.38 180 179 7.41 154.94 200 45.06 -0.2 -0.11 0.81
library(pastecs)
by(survey$Height, survey$Sex, function(x) round(stat.desc(x, norm=T),3))
survey$Sex: Female
nbr.val nbr.null nbr.na min max range sum
102.000 0.000 16.000 150.000 180.340 30.340 16900.040
median mean SE.mean CI.mean.0.95 var std.dev coef.var
166.750 165.687 0.609 1.208 37.844 6.152 0.037
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.330 -0.691 -0.321 -0.339 0.980 0.131
---------------------------------------------------------------------------
survey$Sex: Male
nbr.val nbr.null nbr.na min max range sum
106.000 0.000 12.000 154.940 200.000 45.060 18955.560
median mean SE.mean CI.mean.0.95 var std.dev coef.var
180.000 178.826 0.814 1.614 70.229 8.380 0.047
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.203 -0.433 -0.114 -0.123 0.992 0.772
library(DescTools)
Desc(Height ~ Sex, data=survey)
Call:
Desc.formula(Height ~ Sex, data = survey)
--------------------------------------------------------------------------------------------------
Height ~ Sex
Summary:
n pairs: 237, valid: 208 (90%), missings: 29 (10%), groups: 2
Female Male
mean 165.6867' 178.8260"
median 166.75' 180.00"
sd 6.151777 8.380252
IQR 7.44 12.21
n 102 106
np 0.490 0.510
NAs 16 12
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 96.6766, df = 1, p-value < 2.2e-16
Warning:
Grouping variable contains 1 NAs (0.422%).
library(Rcmdr)
numSummary(survey$Height, groups = survey$Sex)
mean sd IQR 0% 25% 50% 75% 100% data:n data:NA
Female 165.6867 6.151777 7.44 150.00 162.56 166.75 170 180.34 102 16
Male 178.8260 8.380252 12.21 154.94 172.79 180.00 185 200.00 106 12
numSummary(survey$Height, groups = survey$Sex,
statistics=c("mean", "sd", "se(mean)",
"IQR", "quantiles", "cv", "skewness", "kurtosis"))
mean sd se(mean) IQR cv skewness kurtosis 0% 25% 50%
Female 165.6867 6.151777 0.6091167 7.44 0.03712898 -0.3402723 -0.220423939 150.00 162.56 166.75
Male 178.8260 8.380252 0.8139620 12.21 0.04686259 -0.2091088 -0.003157064 154.94 172.79 180.00
75% 100% data:n data:NA
Female 170 180.34 102 16
Male 185 200.00 106 12
library(psych)
psych::describeBy(x = survey$Height, group = list(survey$Sex, survey$Exer))
: Female
: Freq
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 45 167.13 6.42 167.64 167.38 5.4 150 180.34 30.34 -0.5 -0.1 0.96
---------------------------------------------------------------------------
: Male
: Freq
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 59 180.35 7.94 180.34 180.44 7.53 154.94 200 45.06 -0.25 0.72 1.03
---------------------------------------------------------------------------
: Female
: None
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 9 163 4.8 165 163 7.41 157.48 170 12.52 0 -1.84 1.6
---------------------------------------------------------------------------
: Male
: None
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 11 173.96 9.62 171 173.68 8.9 160 190.5 30.5 0.33 -1.23 2.9
---------------------------------------------------------------------------
: Female
: Some
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 48 164.84 5.89 165.05 165.05 5.86 152 176.5 24.5 -0.41 -0.47 0.85
---------------------------------------------------------------------------
: Male
: Some
vars n mean sd median trimmed mad min max range skew kurtosis se
1 1 36 177.81 8.2 179.55 177.86 7.41 160 193.04 33.04 -0.18 -0.79 1.37
library(pastecs)
by(survey$Height, list(survey$Sex, survey$Exer), function(x) round(stat.desc(x, norm=T),3))
: Female
: Freq
nbr.val nbr.null nbr.na min max range sum
45.000 0.000 4.000 150.000 180.340 30.340 7520.880
median mean SE.mean CI.mean.0.95 var std.dev coef.var
167.640 167.131 0.957 1.929 41.231 6.421 0.038
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.500 -0.707 -0.097 -0.070 0.964 0.170
---------------------------------------------------------------------------
: Male
: Freq
nbr.val nbr.null nbr.na min max range sum
59.000 0.000 6.000 154.940 200.000 45.060 10640.820
median mean SE.mean CI.mean.0.95 var std.dev coef.var
180.340 180.353 1.034 2.070 63.109 7.944 0.044
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.253 -0.406 0.718 0.586 0.985 0.655
---------------------------------------------------------------------------
: Female
: None
nbr.val nbr.null nbr.na min max range sum
9.000 0.000 2.000 157.480 170.000 12.520 1466.960
median mean SE.mean CI.mean.0.95 var std.dev coef.var
165.000 162.996 1.598 3.686 22.993 4.795 0.029
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
0.001 0.001 -1.842 -0.658 0.879 0.154
---------------------------------------------------------------------------
: Male
: None
nbr.val nbr.null nbr.na min max range sum
11.000 0.000 2.000 160.000 190.500 30.500 1913.600
median mean SE.mean CI.mean.0.95 var std.dev coef.var
171.000 173.964 2.899 6.460 92.475 9.616 0.055
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
0.335 0.253 -1.230 -0.481 0.954 0.690
---------------------------------------------------------------------------
: Female
: Some
nbr.val nbr.null nbr.na min max range sum
48.000 0.000 10.000 152.000 176.500 24.500 7912.200
median mean SE.mean CI.mean.0.95 var std.dev coef.var
165.050 164.838 0.850 1.710 34.692 5.890 0.036
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.411 -0.599 -0.472 -0.350 0.965 0.165
---------------------------------------------------------------------------
: Male
: Some
nbr.val nbr.null nbr.na min max range sum
36.000 0.000 4.000 160.000 193.040 33.040 6401.140
median mean SE.mean CI.mean.0.95 var std.dev coef.var
179.550 177.809 1.367 2.775 67.261 8.201 0.046
skewness skew.2SE kurtosis kurt.2SE normtest.W normtest.p
-0.175 -0.223 -0.790 -0.514 0.975 0.585
Az adattábla numerikus változóinak mutatói az apply()
és sapply()
függvény, valamint a szokásos mutatószámoló függvényekkel is meghatározhatók. Speciális esetben használhatjuk a colMeans()
és a colSums()
függvényeket is. Az átlag és szórás kiszámítására mutatunk példát.
colMeans(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], na.rm = T)
Wr.Hnd NW.Hnd Pulse Height Age
18.66907 18.58263 74.15104 172.38086 20.37451
apply(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], 2, mean, na.rm = T)
Wr.Hnd NW.Hnd Pulse Height Age
18.66907 18.58263 74.15104 172.38086 20.37451
sapply(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], mean, na.rm = T)
Wr.Hnd NW.Hnd Pulse Height Age
18.66907 18.58263 74.15104 172.38086 20.37451
apply(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], 2, sd, na.rm = T)
Wr.Hnd NW.Hnd Pulse Height Age
1.878981 1.967068 11.687157 9.847528 6.474335
sapply(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], sd, na.rm = T)
Wr.Hnd NW.Hnd Pulse Height Age
1.878981 1.967068 11.687157 9.847528 6.474335
library(psych)
psych::describe(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")])
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 236 18.67 1.88 18.50 18.61 1.48 13.00 23.2 10.20 0.18 0.30 0.12
NW.Hnd 2 236 18.58 1.97 18.50 18.55 1.63 12.50 23.5 11.00 0.02 0.44 0.13
Pulse 3 192 74.15 11.69 72.50 74.02 11.12 35.00 104.0 69.00 -0.02 0.33 0.84
Height 4 209 172.38 9.85 171.00 172.19 10.08 150.00 200.0 50.00 0.22 -0.44 0.68
Age 5 237 20.37 6.47 18.58 18.99 1.61 16.75 73.0 56.25 5.16 33.47 0.42
library(pastecs)
round(stat.desc(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], norm = T), digits=3)
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 236.000 236.000 192.000 209.000 237.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 1.000 1.000 45.000 28.000 0.000
min 13.000 12.500 35.000 150.000 16.750
max 23.200 23.500 104.000 200.000 73.000
range 10.200 11.000 69.000 50.000 56.250
sum 4405.900 4385.500 14237.000 36027.600 4828.760
median 18.500 18.500 72.500 171.000 18.583
mean 18.669 18.583 74.151 172.381 20.375
SE.mean 0.122 0.128 0.843 0.681 0.421
CI.mean.0.95 0.241 0.252 1.664 1.343 0.829
var 3.531 3.869 136.590 96.974 41.917
std.dev 1.879 1.967 11.687 9.848 6.474
coef.var 0.101 0.106 0.158 0.057 0.318
skewness 0.183 0.024 -0.017 0.216 5.163
skew.2SE 0.576 0.074 -0.047 0.641 16.327
kurtosis 0.303 0.441 0.331 -0.437 33.472
kurt.2SE 0.481 0.699 0.474 -0.653 53.139
normtest.W 0.981 0.984 0.987 0.988 0.456
normtest.p 0.003 0.009 0.086 0.088 0.000
library(DescTools)
Desc(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")])
--------------------------------------------------------------------------------------------------
'data.frame': 237 obs. of 5 variables:
1 $ Wr.Hnd: num 18.5 19.5 18 18.8 20 18 17.7 17 20 18.5 ...
2 $ NW.Hnd: num 18 20.5 13.3 18.9 20 17.7 17.7 17.3 19.5 18.5 ...
3 $ Pulse : int 92 104 87 NA 35 64 83 74 72 90 ...
4 $ Height: num 173 178 NA 160 165 ...
5 $ Age : num 18.2 17.6 16.9 20.3 23.7 ...
--------------------------------------------------------------------------------------------------
1 - Wr.Hnd (numeric)
length n NAs unique 0s mean meanSE
237 236 1 60 0 18.669 0.122
.05 .10 .25 median .75 .90 .95
16 16.500 17.500 18.500 19.800 21.150 22.050
rng sd vcoef mad IQR skew kurt
10.200 1.879 0.101 1.483 2.300 0.183 0.303
lowest : 13 (2), 14 (2), 15, 15.4, 15.5 (2)
highest: 22.5 (4), 22.8, 23 (2), 23.1, 23.2 (3)
Shapiro-Wilks normality test p.value : 0.0026825
--------------------------------------------------------------------------------------------------
2 - NW.Hnd (numeric)
length n NAs unique 0s mean meanSE
237 236 1 68 0 18.583 0.128
.05 .10 .25 median .75 .90 .95
15.500 16.300 17.500 18.500 19.725 21 22.225
rng sd vcoef mad IQR skew kurt
11 1.967 0.106 1.631 2.225 0.024 0.441
lowest : 12.5, 13 (2), 13.3, 13.5, 15
highest: 22.7, 23, 23.2 (2), 23.3, 23.5
Shapiro-Wilks normality test p.value : 0.0090864
--------------------------------------------------------------------------------------------------
3 - Pulse (integer)
length n NAs unique 0s mean meanSE
237 192 45 43 0 74.151 0.843
.05 .10 .25 median .75 .90 .95
59.550 60 66 72.500 80 90 92
rng sd vcoef mad IQR skew kurt
69 11.687 0.158 11.119 14 -0.017 0.331
Shapiro-Wilks normality test p.value : 0.086311
lowest : 35, 40, 48 (2), 50 (2), 54
highest: 96 (3), 97, 98, 100 (2), 104 (2)
--------------------------------------------------------------------------------------------------
4 - Height (numeric)
length n NAs unique 0s mean meanSE
237 209 28 67 0 172.381 0.681
.05 .10 .25 median .75 .90 .95
157 160 165 171 180 185.420 189.600
rng sd vcoef mad IQR skew kurt
50 9.848 0.057 10.082 15 0.216 -0.437
lowest : 150, 152, 152.4, 153.5, 154.94 (2)
highest: 191.8, 193.04, 195, 196, 200
Shapiro-Wilks normality test p.value : 0.088436
--------------------------------------------------------------------------------------------------
5 - Age (numeric)
length n NAs unique 0s mean meanSE
237 237 0 88 0 20.375 0.421
.05 .10 .25 median .75 .90 .95
17.083 17.217 17.667 18.583 20.167 23.583 30.684
rng sd vcoef mad IQR skew kurt
56.250 6.474 0.318 1.606 2.500 5.163 33.472
lowest : 16.75, 16.917 (3), 17 (2), 17.083 (7), 17.167 (11)
highest: 41.583, 43.833, 44.25, 70.417, 73
Shapiro-Wilks normality test p.value : < 2.22e-16
library(Rcmdr)
numSummary(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")])
mean sd IQR 0% 25% 50% 75% 100% n NA
Wr.Hnd 18.66907 1.878981 2.300 13.00 17.500 18.500 19.800 23.2 236 1
NW.Hnd 18.58263 1.967068 2.225 12.50 17.500 18.500 19.725 23.5 236 1
Pulse 74.15104 11.687157 14.000 35.00 66.000 72.500 80.000 104.0 192 45
Height 172.38086 9.847528 15.000 150.00 165.000 171.000 180.000 200.0 209 28
Age 20.37451 6.474335 2.500 16.75 17.667 18.583 20.167 73.0 237 0
numSummary(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")],
statistics=c("mean", "sd", "se(mean)", "IQR", "quantiles",
"cv", "skewness", "kurtosis"))
mean sd se(mean) IQR cv skewness kurtosis 0% 25%
Wr.Hnd 18.66907 1.878981 0.1223113 2.300 0.10064677 0.18493154 0.3646210 13.00 17.500
NW.Hnd 18.58263 1.967068 0.1280452 2.225 0.10585522 0.02390177 0.5064567 12.50 17.500
Pulse 74.15104 11.687157 0.8434479 14.000 0.15761285 -0.01677374 0.4073207 35.00 66.000
Height 172.38086 9.847528 0.6811677 15.000 0.05712657 0.21897194 -0.3935254 150.00 165.000
Age 20.37451 6.474335 0.4205532 2.500 0.31776634 5.22905090 34.5311761 16.75 17.667
50% 75% 100% n NA
Wr.Hnd 18.500 19.800 23.2 236 1
NW.Hnd 18.500 19.725 23.5 236 1
Pulse 72.500 80.000 104.0 192 45
Height 171.000 180.000 200.0 209 28
Age 18.583 20.167 73.0 237 0
aggregate(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")],
survey[, "Sex", drop=F], mean, na.rm=T)
Sex Wr.Hnd NW.Hnd Pulse Height Age
1 Female 17.59576 17.45678 75.12632 165.6867 20.40753
2 Male 19.74188 19.71453 73.19792 178.8260 20.33196
aggregate(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")],
survey[, c("Sex","Exer") ], sd, na.rm=T)
Sex Exer Wr.Hnd NW.Hnd Pulse Height Age
1 Female Freq 1.615381 1.708435 12.491753 6.421165 4.831792
2 Male Freq 1.792848 1.733761 9.593214 7.944103 7.098771
3 Female None 1.201741 1.320606 11.414277 4.795058 7.345709
4 Male None 1.738958 2.511257 15.204166 9.616406 7.024934
5 Female Some 1.035148 1.127183 10.270261 5.890017 8.244537
6 Male Some 1.708058 1.655429 13.501122 8.201259 3.516292
library(psych)
psych::describeBy(x = survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")],
group = survey$Sex)
group: Female
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 118 17.60 1.31 17.50 17.64 1.19 13.00 20.80 7.80 -0.65 1.60 0.12
NW.Hnd 2 118 17.46 1.41 17.60 17.52 1.04 12.50 20.70 8.20 -0.78 1.94 0.13
Pulse 3 95 75.13 11.41 75.00 75.19 10.38 40.00 104.00 64.00 -0.14 0.41 1.17
Height 4 102 165.69 6.15 166.75 165.90 5.32 150.00 180.34 30.34 -0.33 -0.32 0.61
Age 5 118 20.41 6.91 18.42 18.83 1.48 16.92 73.00 56.08 4.72 28.42 0.64
---------------------------------------------------------------------------
group: Male
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 117 19.74 1.75 19.50 19.73 1.48 14.00 23.20 9.20 -0.05 0.02 0.16
NW.Hnd 2 117 19.71 1.80 19.50 19.73 1.48 13.30 23.50 10.20 -0.29 0.68 0.17
Pulse 3 96 73.20 12.00 72.00 72.88 11.86 35.00 104.00 69.00 0.11 0.24 1.22
Height 4 106 178.83 8.38 180.00 179.00 7.41 154.94 200.00 45.06 -0.20 -0.11 0.81
Age 5 118 20.33 6.07 18.88 19.15 1.67 16.75 70.42 53.67 5.63 39.17 0.56
library(pastecs)
by(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], survey$Sex,
function(x) round(stat.desc(x, norm=T),3))
survey$Sex: Female
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 118.000 118.000 95.000 102.000 118.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 23.000 16.000 0.000
min 13.000 12.500 40.000 150.000 16.917
max 20.800 20.700 104.000 180.340 73.000
range 7.800 8.200 64.000 30.340 56.083
sum 2076.300 2059.900 7137.000 16900.040 2408.089
median 17.500 17.600 75.000 166.750 18.417
mean 17.596 17.457 75.126 165.687 20.408
SE.mean 0.121 0.130 1.170 0.609 0.636
CI.mean.0.95 0.240 0.257 2.324 1.208 1.259
var 1.729 1.982 130.112 37.844 47.694
std.dev 1.315 1.408 11.407 6.152 6.906
coef.var 0.075 0.081 0.152 0.037 0.338
skewness -0.654 -0.782 -0.139 -0.330 4.722
skew.2SE -1.468 -1.756 -0.280 -0.691 10.603
kurtosis 1.597 1.939 0.408 -0.321 28.422
kurt.2SE 1.807 2.194 0.417 -0.339 32.160
normtest.W 0.962 0.946 0.984 0.980 0.471
normtest.p 0.002 0.000 0.291 0.131 0.000
---------------------------------------------------------------------------
survey$Sex: Male
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 117.000 117.000 96.000 106.000 118.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 1.000 1.000 22.000 12.000 0.000
min 14.000 13.300 35.000 154.940 16.750
max 23.200 23.500 104.000 200.000 70.417
range 9.200 10.200 69.000 45.060 53.667
sum 2309.800 2306.600 7027.000 18955.560 2399.171
median 19.500 19.500 72.000 180.000 18.875
mean 19.742 19.715 73.198 178.826 20.332
SE.mean 0.162 0.167 1.225 0.814 0.559
CI.mean.0.95 0.321 0.330 2.431 1.614 1.107
var 3.065 3.257 143.992 70.229 36.843
std.dev 1.751 1.805 12.000 8.380 6.070
coef.var 0.089 0.092 0.164 0.047 0.299
skewness -0.051 -0.292 0.107 -0.203 5.629
skew.2SE -0.114 -0.654 0.218 -0.433 12.637
kurtosis 0.016 0.683 0.240 -0.114 39.169
kurt.2SE 0.018 0.770 0.246 -0.123 44.320
normtest.W 0.981 0.976 0.981 0.992 0.435
normtest.p 0.100 0.033 0.186 0.772 0.000
library(DescTools)
Desc(Wr.Hnd + NW.Hnd + Pulse + Height + Age ~ Sex, data=survey)
Call:
Desc.formula(Wr.Hnd + NW.Hnd + Pulse + Height + Age ~ Sex, data = survey)
--------------------------------------------------------------------------------------------------
Wr.Hnd ~ Sex
Summary:
n pairs: 237, valid: 235 (99.2%), missings: 2 (0.8%), groups: 2
Female Male
mean 17.59576' 19.74188"
median 17.5' 19.5"
sd 1.314768 1.750775
IQR 1.5 2.5
n 118 117
np 0.502 0.498
NAs 0 1
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 83.8777, df = 1, p-value < 2.2e-16
Warning:
Grouping variable contains 1 NAs (0.422%).
--------------------------------------------------------------------------------------------------
NW.Hnd ~ Sex
Summary:
n pairs: 237, valid: 235 (99.2%), missings: 2 (0.8%), groups: 2
Female Male
mean 17.45678' 19.71453"
median 17.6' 19.5"
sd 1.407822 1.804605
IQR 1.4 2.4
n 118 117
np 0.502 0.498
NAs 0 1
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 90.1132, df = 1, p-value < 2.2e-16
Warning:
Grouping variable contains 1 NAs (0.422%).
--------------------------------------------------------------------------------------------------
Pulse ~ Sex
Summary:
n pairs: 237, valid: 191 (80%), missings: 46 (20%), groups: 2
Female Male
mean 75.12632" 73.19792'
median 75" 72'
sd 11.40664 11.99967
IQR 14 15
n 95 96
np 0.497 0.503
NAs 23 22
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 2.0832, df = 1, p-value = 0.1489
Warning:
Grouping variable contains 1 NAs (0.422%).
--------------------------------------------------------------------------------------------------
Height ~ Sex
Summary:
n pairs: 237, valid: 208 (90%), missings: 29 (10%), groups: 2
Female Male
mean 165.6867' 178.8260"
median 166.75' 180.00"
sd 6.151777 8.380252
IQR 7.44 12.21
n 102 106
np 0.490 0.510
NAs 16 12
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 96.6766, df = 1, p-value < 2.2e-16
Warning:
Grouping variable contains 1 NAs (0.422%).
--------------------------------------------------------------------------------------------------
Age ~ Sex
Summary:
n pairs: 237, valid: 236 (99.6%), missings: 1 (0.4%), groups: 2
Female Male
mean 20.40753" 20.33196'
median 18.417' 18.875"
sd 6.906053 6.069863
IQR 2.47925 2.37450
n 118 118
np 0.500 0.500
NAs 0 0
0s 0 0
' min, " max
Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 4.3469, df = 1, p-value = 0.03708
Warning:
Grouping variable contains 1 NAs (0.422%).
library(Rcmdr)
numSummary(survey$Height, groups = survey$Sex)
mean sd IQR 0% 25% 50% 75% 100% data:n data:NA
Female 165.6867 6.151777 7.44 150.00 162.56 166.75 170 180.34 102 16
Male 178.8260 8.380252 12.21 154.94 172.79 180.00 185 200.00 106 12
numSummary(survey$Height, groups = survey$Sex,
statistics=c("mean", "sd", "se(mean)",
"IQR", "quantiles", "cv", "skewness", "kurtosis"))
mean sd se(mean) IQR cv skewness kurtosis 0% 25% 50%
Female 165.6867 6.151777 0.6091167 7.44 0.03712898 -0.3402723 -0.220423939 150.00 162.56 166.75
Male 178.8260 8.380252 0.8139620 12.21 0.04686259 -0.2091088 -0.003157064 154.94 172.79 180.00
75% 100% data:n data:NA
Female 170 180.34 102 16
Male 185 200.00 106 12
library(psych)
psych::describeBy(x = survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")],
group = list(survey$Sex, survey$Exer))
: Female
: Freq
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 49 17.46 1.62 17.50 17.56 1.48 13.00 20.80 7.80 -0.68 0.97 0.23
NW.Hnd 2 49 17.37 1.71 17.50 17.53 0.89 12.50 20.70 8.20 -0.97 1.46 0.24
Pulse 3 41 73.61 12.49 72.00 73.45 11.86 40.00 104.00 64.00 -0.01 0.44 1.95
Height 4 45 167.13 6.42 167.64 167.38 5.40 150.00 180.34 30.34 -0.50 -0.10 0.96
Age 5 49 20.11 4.83 18.50 19.08 1.73 16.92 39.75 22.83 2.46 5.82 0.69
---------------------------------------------------------------------------
: Male
: Freq
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 65 19.88 1.79 19.80 19.90 1.78 14.00 23.20 9.20 -0.31 0.45 0.22
NW.Hnd 2 65 19.90 1.73 19.80 19.89 1.78 15.50 23.50 8.00 -0.05 -0.17 0.22
Pulse 3 53 70.68 9.59 70.00 70.23 8.90 48.00 100.00 52.00 0.48 0.54 1.32
Height 4 59 180.35 7.94 180.34 180.44 7.53 154.94 200.00 45.06 -0.25 0.72 1.03
Age 5 65 20.50 7.10 18.58 19.17 1.61 17.17 70.42 53.25 5.59 35.16 0.88
---------------------------------------------------------------------------
: Female
: None
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 11 17.67 1.20 18.00 17.71 1.04 15.50 19.50 4.00 -0.29 -1.24 0.36
NW.Hnd 2 11 17.20 1.32 17.90 17.23 1.19 15.10 19.00 3.90 -0.31 -1.57 0.40
Pulse 3 7 71.43 11.41 70.00 71.43 8.90 50.00 86.00 36.00 -0.58 -0.80 4.31
Height 4 9 163.00 4.80 165.00 163.00 7.41 157.48 170.00 12.52 0.00 -1.84 1.60
Age 5 11 22.33 7.35 19.83 20.76 1.85 17.17 41.58 24.42 1.69 1.50 2.21
---------------------------------------------------------------------------
: Male
: None
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 13 19.53 1.74 18.90 19.38 1.33 17.50 23.20 5.70 0.89 -0.52 0.48
NW.Hnd 2 13 19.28 2.51 19.10 19.46 1.04 13.30 23.30 10.00 -0.52 0.42 0.70
Pulse 3 10 80.50 15.20 80.00 80.12 20.02 60.00 104.00 44.00 0.15 -1.65 4.81
Height 4 11 173.96 9.62 171.00 173.68 8.90 160.00 190.50 30.50 0.33 -1.23 2.90
Age 5 13 20.76 7.02 18.92 19.01 1.11 16.92 43.83 26.92 2.69 5.97 1.95
---------------------------------------------------------------------------
: Female
: Some
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 58 17.69 1.04 17.60 17.70 0.89 15.50 20.1 4.60 -0.02 -0.48 0.14
NW.Hnd 2 58 17.58 1.13 17.60 17.55 1.11 15.00 20.2 5.20 0.12 -0.13 0.15
Pulse 3 47 77.00 10.27 76.00 77.03 8.90 50.00 100.0 50.00 -0.06 -0.22 1.50
Height 4 48 164.84 5.89 165.05 165.05 5.86 152.00 176.5 24.50 -0.41 -0.47 0.85
Age 5 58 20.29 8.24 18.21 18.55 1.24 16.92 73.0 56.08 4.98 27.13 1.08
---------------------------------------------------------------------------
: Male
: Some
vars n mean sd median trimmed mad min max range skew kurtosis se
Wr.Hnd 1 39 19.59 1.71 19.50 19.57 1.48 16.00 23.10 7.10 0.07 -0.67 0.27
NW.Hnd 2 39 19.55 1.66 19.50 19.59 1.48 15.50 22.50 7.00 -0.19 -0.25 0.27
Pulse 3 33 75.03 13.50 75.00 75.89 14.83 35.00 96.00 61.00 -0.67 0.30 2.35
Height 4 36 177.81 8.20 179.55 177.86 7.41 160.00 193.04 33.04 -0.18 -0.79 1.37
Age 5 40 19.92 3.52 18.92 19.17 1.48 16.75 35.50 18.75 2.72 8.17 0.56
library(pastecs)
by(survey[, c("Wr.Hnd", "NW.Hnd", "Pulse", "Height", "Age")], list(survey$Sex, survey$Exer),
function(x) round(stat.desc(x, norm=T),3))
: Female
: Freq
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 49.000 49.000 41.000 45.000 49.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 8.000 4.000 0.000
min 13.000 12.500 40.000 150.000 16.917
max 20.800 20.700 104.000 180.340 39.750
range 7.800 8.200 64.000 30.340 22.833
sum 855.700 851.200 3018.000 7520.880 985.502
median 17.500 17.500 72.000 167.640 18.500
mean 17.463 17.371 73.610 167.131 20.112
SE.mean 0.231 0.244 1.951 0.957 0.690
CI.mean.0.95 0.464 0.491 3.943 1.929 1.388
var 2.609 2.919 156.044 41.231 23.346
std.dev 1.615 1.708 12.492 6.421 4.832
coef.var 0.093 0.098 0.170 0.038 0.240
skewness -0.677 -0.967 -0.007 -0.500 2.456
skew.2SE -0.996 -1.423 -0.010 -0.707 3.613
kurtosis 0.966 1.455 0.444 -0.097 5.816
kurt.2SE 0.723 1.089 0.306 -0.070 4.353
normtest.W 0.947 0.902 0.976 0.964 0.638
normtest.p 0.029 0.001 0.517 0.170 0.000
---------------------------------------------------------------------------
: Male
: Freq
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 65.000 65.000 53.000 59.000 65.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 12.000 6.000 0.000
min 14.000 15.500 48.000 154.940 17.167
max 23.200 23.500 100.000 200.000 70.417
range 9.200 8.000 52.000 45.060 53.250
sum 1292.000 1293.300 3746.000 10640.820 1332.667
median 19.800 19.800 70.000 180.340 18.583
mean 19.877 19.897 70.679 180.353 20.503
SE.mean 0.222 0.215 1.318 1.034 0.880
CI.mean.0.95 0.444 0.430 2.644 2.070 1.759
var 3.214 3.006 92.030 63.109 50.393
std.dev 1.793 1.734 9.593 7.944 7.099
coef.var 0.090 0.087 0.136 0.044 0.346
skewness -0.308 -0.045 0.485 -0.253 5.586
skew.2SE -0.519 -0.076 0.740 -0.406 9.400
kurtosis 0.453 -0.168 0.544 0.718 35.161
kurt.2SE 0.387 -0.143 0.422 0.586 29.989
normtest.W 0.973 0.981 0.978 0.985 0.391
normtest.p 0.166 0.397 0.437 0.655 0.000
---------------------------------------------------------------------------
: Female
: None
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 11.000 11.000 7.000 9.000 11.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 4.000 2.000 0.000
min 15.500 15.100 50.000 157.480 17.167
max 19.500 19.000 86.000 170.000 41.583
range 4.000 3.900 36.000 12.520 24.416
sum 194.400 189.200 500.000 1466.960 245.584
median 18.000 17.900 70.000 165.000 19.833
mean 17.673 17.200 71.429 162.996 22.326
SE.mean 0.362 0.398 4.314 1.598 2.215
CI.mean.0.95 0.807 0.887 10.556 3.686 4.935
var 1.444 1.744 130.286 22.993 53.959
std.dev 1.202 1.321 11.414 4.795 7.346
coef.var 0.068 0.077 0.160 0.029 0.329
skewness -0.295 -0.312 -0.583 0.001 1.688
skew.2SE -0.223 -0.236 -0.367 0.001 1.277
kurtosis -1.237 -1.570 -0.796 -1.842 1.501
kurt.2SE -0.483 -0.614 -0.251 -0.658 0.586
normtest.W 0.962 0.910 0.927 0.879 0.653
normtest.p 0.798 0.246 0.523 0.154 0.000
---------------------------------------------------------------------------
: Male
: None
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 13.000 13.000 10.000 11.000 13.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 3.000 2.000 0.000
min 17.500 13.300 60.000 160.000 16.917
max 23.200 23.300 104.000 190.500 43.833
range 5.700 10.000 44.000 30.500 26.916
sum 253.900 250.700 805.000 1913.600 269.834
median 18.900 19.100 80.000 171.000 18.917
mean 19.531 19.285 80.500 173.964 20.756
SE.mean 0.482 0.696 4.808 2.899 1.948
CI.mean.0.95 1.051 1.518 10.876 6.460 4.245
var 3.024 6.306 231.167 92.475 49.350
std.dev 1.739 2.511 15.204 9.616 7.025
coef.var 0.089 0.130 0.189 0.055 0.338
skewness 0.885 -0.524 0.149 0.335 2.689
skew.2SE 0.718 -0.425 0.108 0.253 2.181
kurtosis -0.518 0.416 -1.649 -1.230 5.974
kurt.2SE -0.218 0.174 -0.618 -0.481 2.508
normtest.W 0.882 0.910 0.935 0.954 0.465
normtest.p 0.075 0.186 0.499 0.690 0.000
---------------------------------------------------------------------------
: Female
: Some
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 58.000 58.000 47.000 48.000 58.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 0.000 0.000 11.000 10.000 0.000
min 15.500 15.000 50.000 152.000 16.917
max 20.100 20.200 100.000 176.500 73.000
range 4.600 5.200 50.000 24.500 56.083
sum 1026.200 1019.500 3619.000 7912.200 1177.003
median 17.600 17.600 76.000 165.050 18.209
mean 17.693 17.578 77.000 164.838 20.293
SE.mean 0.136 0.148 1.498 0.850 1.083
CI.mean.0.95 0.272 0.296 3.015 1.710 2.168
var 1.072 1.271 105.478 34.692 67.972
std.dev 1.035 1.127 10.270 5.890 8.245
coef.var 0.059 0.064 0.133 0.036 0.406
skewness -0.019 0.119 -0.058 -0.411 4.976
skew.2SE -0.031 0.189 -0.083 -0.599 7.931
kurtosis -0.479 -0.128 -0.216 -0.472 27.134
kurt.2SE -0.387 -0.103 -0.159 -0.350 21.948
normtest.W 0.983 0.981 0.989 0.965 0.375
normtest.p 0.591 0.502 0.938 0.165 0.000
---------------------------------------------------------------------------
: Male
: Some
Wr.Hnd NW.Hnd Pulse Height Age
nbr.val 39.000 39.000 33.000 36.000 40.000
nbr.null 0.000 0.000 0.000 0.000 0.000
nbr.na 1.000 1.000 7.000 4.000 0.000
min 16.000 15.500 35.000 160.000 16.750
max 23.100 22.500 96.000 193.040 35.500
range 7.100 7.000 61.000 33.040 18.750
sum 763.900 762.600 2476.000 6401.140 796.670
median 19.500 19.500 75.000 179.550 18.917
mean 19.587 19.554 75.030 177.809 19.917
SE.mean 0.274 0.265 2.350 1.367 0.556
CI.mean.0.95 0.554 0.537 4.787 2.775 1.125
var 2.917 2.740 182.280 67.261 12.364
std.dev 1.708 1.655 13.501 8.201 3.516
coef.var 0.087 0.085 0.180 0.046 0.177
skewness 0.073 -0.195 -0.675 -0.175 2.720
skew.2SE 0.096 -0.258 -0.826 -0.223 3.638
kurtosis -0.665 -0.249 0.300 -0.790 8.175
kurt.2SE -0.449 -0.168 0.188 -0.514 5.579
normtest.W 0.985 0.977 0.944 0.975 0.666
normtest.p 0.881 0.583 0.090 0.585 0.000
summary(survey)
Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse
Female:118 Min. :13.00 Min. :12.50 Left : 18 L on R : 99 Min. : 35.00
Male :118 1st Qu.:17.50 1st Qu.:17.50 Right:218 Neither: 18 1st Qu.: 66.00
NA's : 1 Median :18.50 Median :18.50 NA's : 1 R on L :120 Median : 72.50
Mean :18.67 Mean :18.58 Mean : 74.15
3rd Qu.:19.80 3rd Qu.:19.73 3rd Qu.: 80.00
Max. :23.20 Max. :23.50 Max. :104.00
NA's :1 NA's :1 NA's :45
Clap Exer Smoke Height M.I Age
Left : 39 Freq:115 Heavy: 11 Min. :150.0 Imperial: 68 Min. :16.75
Neither: 50 None: 24 Never:189 1st Qu.:165.0 Metric :141 1st Qu.:17.67
Right :147 Some: 98 Occas: 19 Median :171.0 NA's : 28 Median :18.58
NA's : 1 Regul: 17 Mean :172.4 Mean :20.37
NA's : 1 3rd Qu.:180.0 3rd Qu.:20.17
Max. :200.0 Max. :73.00
NA's :28
psych
és a DescTools
csomagokkallibrary(psych)
psych::describeData(survey)
n.obs = 237 of which 168 are complete cases. Number of variables = 12 of which all are numeric TRUE
variable # n.obs type H1 H2 H3 H4 T1 T2 T3 T4
Sex* 1 236 2 Female Male Male Male Female Female Male Female
Wr.Hnd 2 236 1 18.5 19.5 18.0 18.8 18.5 17.5 21.0 17.6
NW.Hnd 3 236 1 18.0 20.5 13.3 18.9 18.0 16.5 21.5 17.3
W.Hnd* 4 236 2 Right Left Right Right Right Right Right Right
Fold* 5 237 2 R on L R on L L on R R on L L on R R on L R on L R on L
Pulse 6 192 1 92 104 87 <NA> 88 <NA> 90 85
Clap* 7 236 2 Left Left Neither Neither Right Right Right Right
Exer* 8 237 2 Some None None None Some Some Some Freq
Smoke* 9 236 2 Never Regul Occas Never Never Never Never Never
Height 10 209 1 173.0 177.8 <NA> 160.0 160.0 170.0 183.0 168.5
M.I* 11 209 2 Metric Imperial <NA> Metric Metric Metric Metric Metric
Age 12 237 1 18.250 17.583 16.917 20.333 16.917 18.583 17.167 17.750
psych::describe(survey)
vars n mean sd median trimmed mad min max range skew kurtosis se
Sex* 1 236 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Wr.Hnd 2 236 18.67 1.88 18.50 18.61 1.48 13.00 23.2 10.20 0.18 0.30 0.12
NW.Hnd 3 236 18.58 1.97 18.50 18.55 1.63 12.50 23.5 11.00 0.02 0.44 0.13
W.Hnd* 4 236 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Fold* 5 237 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Pulse 6 192 74.15 11.69 72.50 74.02 11.12 35.00 104.0 69.00 -0.02 0.33 0.84
Clap* 7 236 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Exer* 8 237 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Smoke* 9 236 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Height 10 209 172.38 9.85 171.00 172.19 10.08 150.00 200.0 50.00 0.22 -0.44 0.68
M.I* 11 209 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
Age 12 237 20.37 6.47 18.58 18.99 1.61 16.75 73.0 56.25 5.16 33.47 0.42
library(DescTools)
Desc(survey)
--------------------------------------------------------------------------------------------------
'data.frame': 237 obs. of 12 variables:
1 $ Sex : Factor w/ 2 levels "Female","Male": 1 2 2 2 2 1 2 1 2 2 ...
2 $ Wr.Hnd: num 18.5 19.5 18 18.8 20 18 17.7 17 20 18.5 ...
3 $ NW.Hnd: num 18 20.5 13.3 18.9 20 17.7 17.7 17.3 19.5 18.5 ...
4 $ W.Hnd : Factor w/ 2 levels "Left","Right": 2 1 2 2 2 2 2 2 2 2 ...
5 $ Fold : Factor w/ 3 levels "L on R","Neither",..: 3 3 1 3 2 1 1 3 3 3 ...
6 $ Pulse : int 92 104 87 NA 35 64 83 74 72 90 ...
7 $ Clap : Factor w/ 3 levels "Left","Neither",..: 1 1 2 2 3 3 3 3 3 3 ...
8 $ Exer : Factor w/ 3 levels "Freq","None",..: 3 2 2 2 3 3 1 1 3 3 ...
9 $ Smoke : Factor w/ 4 levels "Heavy","Never",..: 2 4 3 2 2 2 2 2 2 2 ...
10 $ Height: num 173 178 NA 160 165 ...
11 $ M.I : Factor w/ 2 levels "Imperial","Metric": 2 1 NA 2 2 1 1 2 2 2 ...
12 $ Age : num 18.2 17.6 16.9 20.3 23.7 ...
--------------------------------------------------------------------------------------------------
1 - Sex (factor - dichotomous)
length n NAs unique
237 236 1 2
freq perc lci.95 uci.95'
Female 118 .5 .437 .563
Male 118 .5 .437 .563
' 95%-CI Wilson
--------------------------------------------------------------------------------------------------
2 - Wr.Hnd (numeric)
length n NAs unique 0s mean meanSE
237 236 1 60 0 18.669 0.122
.05 .10 .25 median .75 .90 .95
16 16.500 17.500 18.500 19.800 21.150 22.050
rng sd vcoef mad IQR skew kurt
10.200 1.879 0.101 1.483 2.300 0.183 0.303
lowest : 13 (2), 14 (2), 15, 15.4, 15.5 (2)
highest: 22.5 (4), 22.8, 23 (2), 23.1, 23.2 (3)
Shapiro-Wilks normality test p.value : 0.0026825
--------------------------------------------------------------------------------------------------
3 - NW.Hnd (numeric)
length n NAs unique 0s mean meanSE
237 236 1 68 0 18.583 0.128
.05 .10 .25 median .75 .90 .95
15.500 16.300 17.500 18.500 19.725 21 22.225
rng sd vcoef mad IQR skew kurt
11 1.967 0.106 1.631 2.225 0.024 0.441
lowest : 12.5, 13 (2), 13.3, 13.5, 15
highest: 22.7, 23, 23.2 (2), 23.3, 23.5
Shapiro-Wilks normality test p.value : 0.0090864
--------------------------------------------------------------------------------------------------
4 - W.Hnd (factor - dichotomous)
length n NAs unique
237 236 1 2
freq perc lci.95 uci.95'
Left 18 .076 .049 .117
Right 218 .924 .883 .951
' 95%-CI Wilson
--------------------------------------------------------------------------------------------------
5 - Fold (factor)
length n NAs levels unique dupes
237 237 0 3 3 y
level freq perc cumfreq cumperc
1 R on L 120 .506 120 .506
2 L on R 99 .418 219 .924
3 Neither 18 .076 237 1.000
--------------------------------------------------------------------------------------------------
6 - Pulse (integer)
length n NAs unique 0s mean meanSE
237 192 45 43 0 74.151 0.843
.05 .10 .25 median .75 .90 .95
59.550 60 66 72.500 80 90 92
rng sd vcoef mad IQR skew kurt
69 11.687 0.158 11.119 14 -0.017 0.331
Shapiro-Wilks normality test p.value : 0.086311
lowest : 35, 40, 48 (2), 50 (2), 54
highest: 96 (3), 97, 98, 100 (2), 104 (2)
--------------------------------------------------------------------------------------------------
7 - Clap (factor)
length n NAs levels unique dupes
237 236 1 3 3 y
level freq perc cumfreq cumperc
1 Right 147 .623 147 .623
2 Neither 50 .212 197 .835
3 Left 39 .165 236 1.000
--------------------------------------------------------------------------------------------------
8 - Exer (factor)
length n NAs levels unique dupes
237 237 0 3 3 y
level freq perc cumfreq cumperc
1 Freq 115 .485 115 .485
2 Some 98 .414 213 .899
3 None 24 .101 237 1.000
--------------------------------------------------------------------------------------------------
9 - Smoke (factor)
length n NAs levels unique dupes
237 236 1 4 4 y
level freq perc cumfreq cumperc
1 Never 189 .801 189 .801
2 Occas 19 .081 208 .881
3 Regul 17 .072 225 .953
4 Heavy 11 .047 236 1.000
--------------------------------------------------------------------------------------------------
10 - Height (numeric)
length n NAs unique 0s mean meanSE
237 209 28 67 0 172.381 0.681
.05 .10 .25 median .75 .90 .95
157 160 165 171 180 185.420 189.600
rng sd vcoef mad IQR skew kurt
50 9.848 0.057 10.082 15 0.216 -0.437
lowest : 150, 152, 152.4, 153.5, 154.94 (2)
highest: 191.8, 193.04, 195, 196, 200
Shapiro-Wilks normality test p.value : 0.088436
--------------------------------------------------------------------------------------------------
11 - M.I (factor - dichotomous)
length n NAs unique
237 209 28 2
freq perc lci.95 uci.95'
Imperial 68 .325 .265 .392
Metric 141 .675 .608 .735
' 95%-CI Wilson
--------------------------------------------------------------------------------------------------
12 - Age (numeric)
length n NAs unique 0s mean meanSE
237 237 0 88 0 20.375 0.421
.05 .10 .25 median .75 .90 .95
17.083 17.217 17.667 18.583 20.167 23.583 30.684
rng sd vcoef mad IQR skew kurt
56.250 6.474 0.318 1.606 2.500 5.163 33.472
lowest : 16.75, 16.917 (3), 17 (2), 17.083 (7), 17.167 (11)
highest: 41.583, 43.833, 44.25, 70.417, 73
Shapiro-Wilks normality test p.value : < 2.22e-16